EVALUATION OF DISSIPATIVE LOSSES FROM NF MEASUREMENTS.
(June 20 2013)

The measurement problem.

Modern low noise amplifiers can give noise temperatures down to about 10 K when the device is operated at room temperature. When such amplifiers are used together with low noise antennas very small losses cause significant degradation of S/N even though the change of the NF (referenced to 290 K) would be very small.

By use of cryogenic systems one can avoid the problem completely. That is what professionals do. It is however possible to do accurate measurements at room temperature with equipment available to radio amateurs. That requires measurement of noise power ratios that are close to one and therefore such measurements are slow.

We can measure changes in NF by use of S/N ratios or by use of NF meters where circulators are used to isolate from the impedance variations of the noise source. The NF measurements on this page was used with this setup: Using the HP8970A with circulators.

The NF will change when something (a DUT) is inserted immediately in front of a LNA. The change depends on two factors:

1) The NF of the LNA itself depends on the feed impedance.
2) Anything inserted in front of a LNA will have dissipative losses that degrade NF by attenuating the signal and adding thermal noise.

We want to measure the second effect and need to know the first effect in order to correct for it.

Note that mismatch losses are accounted for by the NF vs impedance variation which has to be known at the point where the DUT is inserted. A good LNA has a far more shallow minimum for the NF than the same LNA with an attenuator in front of it. The L LNA by AD6IW has a NF a little below 0.3 dB for a source impedance near 50 ohms. For VSWR=1.5:1 the NF increases by about 0.045 dB regardless of whether the feed impedance is 33 or 75 ohms or reactive. Finding the optimum input impedance for an LNA on 1296 MHz.

The NF vs impedance variation is however uncertain. It depends on the knowledge of the losses in the devices used to change the impedance. The above link assumes that the losses of the impedance tuner is 0.0807 dB. The impedance tuner losses is the sum of the losses of DUT1, DUT3 and DUT8. but the S11 method gives 0.094 dB which (if correct) would make the NF minimum about 20% more shallow.

An overkill study.

By measuring the NF as well as the impedance of with many combinations of DUT1, DUT3, DUT8, DUTA, DUTB and DUTC one can map many points on the NF vs impedance surface. The dissipative losses are additive while the impedance changes are not (they are periodic) so one can set up an over-determined equation system for the six losses and the two parameters that determine the NF vs impedance map. By use of so many combinations of so many DUTs it should be possible to evaluate where accuracy problems occur.

Table 1 shows measured noise figures and DUT impedances. The network analyzer was calibrated with a home-made calibration kit for which the accuracy might be a little uncertain. Open and short should be fairly accurate, but the load might deviate a little from 50 ohms. The DC resistance is 49.5 ohms.

Each DUT is measured on the calibrated female SMA connector with the calibration load on the female connector of the DUT. Table 1 shows all the raw data.


Device    N       Tamb         Te          Zre        Zim
                (Deg. C)      (K)       (Ohms)     (j Ohms)       
NONE     108     26.5        18.29       50.00       0.00
CBA183   166     26.4        32.89       55.29       0.60
CBA      273     26.5        26.49       36.23      -4.55
183CBA   165     26.4        38.73       27.13      -9.64
183      560     26.1        26.54       53.60     -17.42
ACB      325     25.7        27.15       67.53      10.41
ACB831   163     26.0        32.81       56.76       3.06
831      212     26.1        25.91       50.31      19.40
831ACB   244     26.3        39.43       97.10      21.69
831ABC   239     26.0        36.82       80.72     -23.35
318ABC   124     25.7        37.12       60.67     -32.02
318      120     25.9        25.81       63.82       7.78
ABC318   620     26.1        33.07       46.40       2.81
ABC      278     28.0        27.40       55.50     -17.06
NONE     238     28.3        18.39       50.00       0.00
BCA      265     27.5        26.45       40.54      13.61
BCA381   431     28.0        32.34       50.82       1.09
381      174     27.8        25.57       35.66      -1.43
381BCA   141     27.6        37.60       31.68      21.49
138BCA  1744     27.3        32.83       58.88       7.14
138      267     27.1        26.56       66.17      17.03
BCA138   470     26.5        38.93       89.93      31.27
BCA183   611     26.8        36.77       76.19     -22.25
183BCA   250     27.2        34.11       32.73       4.39
ABC381   237     27.3        37.75       25.78      -2.79
381ABC   303     27.2        32.76       50.53      -0.25
NONE     282     27.3        18.46       50.00       0.00
CBA831   203     27.2        38.55       41.44      32.31
831CBA   179     27.4        32.39       53.06      -4.17
813      202     27.2        25.34       47.63      13.07
BAC      239     27.4        26.95       41.10      13.91
CAB      170     27.3        27.37       68.45      11.11
CA       130     27.3        23.33       51.02      -0.09
C        268     26.9        20.84       50.37       1.11
CB       127     27.2        24.62       69.93      10.10
B        216     27.1        22.37       69.50      11.81
BC       406     27.6        24.51       56.95     -18.30
BA       209     27.7        24.29       36.21      -5.55
A        136     27.7        21.14       51.22       1.18
AB       200     27.5        25.20       68.83       9.55
AC       211     27.7        23.47       51.70       0.03
81       374     27.8        23.83       36.85      -0.51
8        424     27.8        22.28       67.14      11.65
83       387     28.0        24.29       53.65     -19.52
3        322     27.7        20.23       49.19      -1.82
38       241     27.5        24.32       67.20      14.25
31       440     27.8        22.68       53.98       1.71
1        298     27.8        21.05       52.38       0.28
13       200     28.0        22.59       49.18      -4.12
18       362     28.3        24.88       64.46      10.07
4        272     28.3        22.52       52.01       1.23
5        493     28.2        22.90       49.84       1.10
6        250     28.1        26.63       50.43       2.28
7        501     27.9        23.19       54.08      -0.67
D        144     27.9        23.72       50.74       0.90
8B       268     28.0        23.73       54.96      -4.52
B8A      129     28.2        25.68       50.49       4.29
B8       419     28.2        23.33       50.47      -3.16
B8C      393     28.1        25.51       47.36       0.46
3C       433     28.9        22.58       48.60       1.87
C3       193     28.7        22.74       50.24      -2.25
NONE    1280     28.6        18.57       50.00       0.00  
A1       247     28.6        23.79       50.82      -0.16
1A       290     28.6        23.67       48.83       0.88
C3A      206     28.8        25.16       50.93       3.27
3CA      522     28.6        25.27       52.86      -1.04
A3C      449     28.7        25.11       47.31       0.74
AC3      506     28.5        25.27       48.87      -3.47
END

Table 1 NF and impedances for combinations of DUTs.
N is the number of averages of 64 averages.
Tamb is the room temperature.
Te is the averaged result from the 8970A.
Zre and Zim is the impedance seen by the LNA.



Table 1 is used as the input to this computer program nfdut-1.0.tbz (17669 bytes) It is a simple fortran program that makes a guess for the S parameters of the 12 DUTs in table 1. It then computes the impedance of series connected DUTs and adjusts the parameters for an optimum fit. After 20 iterations when the S parameters have converged the program computes the NF for the fitted impedance in each case using four guessed parameters. Two for the optimum source impedance one for the shallowness of the noise minimum and one for the zero point of the NF scale. The program continues to optimize all the parameters. First with a small weight on the NF agreement, but at the end with a large weigtht on that.

The raw data Te from table 1 is first corrected for the variations of the room temperature to give the value that would have been observed at a room temperature of 26 Centigrade. The Te value is then converted to NF using the actual system temperature 299 K which means that the NF degradation is equal to the dissipative loss plus the change in NF due to the impedance change.

The output of the parameter fit is listed in table 2.


Dev.      Z(mea)     Zerr     Loss     NF(mea)    NFerr     VSWR       NF      NFloss
0     (50.00,  0.00) 0.00   -0.0000    0.2569    0.0010    1.0000    0.2559    0.0002
CBA183(55.29,  0.60) 0.15    0.1903    0.4525    0.0039    1.1080    0.2582    0.0026
CBA   (36.23, -4.55) 0.07    0.0994    0.3677   -0.0043    1.4064    0.2726    0.0169
183CBA(27.13, -9.64) 0.25    0.1903    0.5283    0.0117    1.9548    0.3262    0.0705
183   (53.60,-17.42) 0.12    0.0889    0.3691    0.0021    1.4062    0.2782    0.0225
ACB   (67.53, 10.41) 0.35    0.0994    0.3780    0.0022    1.4247    0.2765    0.0208
ACB831(56.76,  3.06) 0.59    0.1903    0.4522    0.0022    1.1514    0.2597    0.0040
831   (50.31, 19.40) 0.37    0.0889    0.3607   -0.0048    1.4796    0.2766    0.0210
831ACB(97.10, 21.69) 0.07    0.1903    0.5374    0.0030    2.0724    0.3441    0.0884
831ABC(80.72,-23.35) 0.33    0.1903    0.5044   -0.0054    1.8136    0.3194    0.0637
318ABC(60.67,-32.02) 0.20    0.1903    0.5088   -0.0031    1.8232    0.3215    0.0658
318   (63.82,  7.78) 0.30    0.0889    0.3598    0.0023    1.3185    0.2686    0.0129
ABC318(46.40,  2.81) 0.06    0.1903    0.4554    0.0089    1.1002    0.2562    0.0005
ABC   (55.50,-17.06) 0.09    0.0994    0.3771   -0.0001    1.4008    0.2778    0.0221
0     (50.00,  0.00) 0.00   -0.0000    0.2548   -0.0011    1.0000    0.2559    0.0002
BCA   (40.54, 13.61) 0.10    0.0994    0.3653   -0.0064    1.4443    0.2724    0.0167
BCA381(50.82,  1.09) 0.21    0.1903    0.4424   -0.0040    1.0254    0.2560    0.0003
381   (35.66, -1.43) 0.08    0.0889    0.3530   -0.0071    1.4015    0.2713    0.0156
381BCA(31.68, 21.49) 0.14    0.1903    0.5115   -0.0011    1.9999    0.3223    0.0666
138BCA(58.88,  7.14) 0.40    0.1903    0.4501   -0.0031    1.2315    0.2628    0.0071
138   (66.17, 17.03) 0.34    0.0889    0.3675   -0.0023    1.4930    0.2810    0.0253
BCA138(89.93, 31.27) 0.07    0.1903    0.5307   -0.0044    2.0930    0.3448    0.0891
BCA183(76.19,-22.25) 0.12    0.1903    0.5023    0.0014    1.7332    0.3106    0.0549
183BCA(32.73,  4.39) 0.10    0.1903    0.4670   -0.0046    1.5517    0.2812    0.0255
ABC381(25.78, -2.79) 0.03    0.1903    0.5140    0.0020    1.9451    0.3217    0.0660
381ABC(50.53, -0.25) 0.12    0.1903    0.4493    0.0029    1.0095    0.2560    0.0004
0     (50.00,  0.00) 0.00   -0.0000    0.2577    0.0018    1.0000    0.2559    0.0002
CBA831(41.44, 32.31) 0.12    0.1903    0.5245    0.0039    2.0540    0.3303    0.0746
831CBA(53.06, -4.17) 0.06    0.1903    0.4441   -0.0050    1.1068    0.2588    0.0031
813   (47.63, 13.07) 0.13    0.0889    0.3510   -0.0024    1.3104    0.2645    0.0089
BAC   (41.10, 13.91) 0.22    0.0994    0.3722    0.0005    1.4428    0.2723    0.0166
CAB   (68.45, 11.11) 0.14    0.0994    0.3780    0.0005    1.4446    0.2781    0.0224
CA    (51.02, -0.09) 0.20    0.0681    0.3238   -0.0004    1.0165    0.2561    0.0004
C     (50.37,  1.11) 0.07    0.0319    0.2909    0.0031    1.0249    0.2559    0.0002
CB    (69.93, 10.10) 0.20    0.0630    0.3414   -0.0005    1.4518    0.2790    0.0233
B     (69.50, 11.81) 0.16    0.0308    0.3113    0.0004    1.4674    0.2800    0.0243
BC    (56.95,-18.30) 0.26    0.0630    0.3392   -0.0049    1.4385    0.2811    0.0255
BA    (36.21, -5.55) 0.21    0.0670    0.3360   -0.0049    1.4207    0.2739    0.0182
A     (51.22,  1.18) 0.08    0.0359    0.2935    0.0015    1.0325    0.2561    0.0004
AB    (68.83,  9.55) 0.09    0.0670    0.3486    0.0045    1.4298    0.2771    0.0215
AC    (51.70,  0.03) 0.18    0.0681    0.3250    0.0006    1.0305    0.2563    0.0006
81    (36.85, -0.51) 0.27    0.0664    0.3296   -0.0051    1.3630    0.2683    0.0127
8     (67.14, 11.65) 0.24    0.0324    0.3087   -0.0003    1.4293    0.2767    0.0210
83    (53.65,-19.52) 0.22    0.0546    0.3354   -0.0028    1.4678    0.2836    0.0279
3     (49.19, -1.82) 0.11    0.0221    0.2811    0.0026    1.0433    0.2564    0.0007
38    (67.20, 14.25) 0.17    0.0546    0.3368    0.0025    1.4705    0.2796    0.0240
31    (53.98,  1.71) 0.08    0.0561    0.3141    0.0008    1.0855    0.2573    0.0016
1     (52.38,  0.28) 0.16    0.0338    0.2920    0.0017    1.0448    0.2565    0.0009
13    (49.18, -4.12) 0.09    0.0561    0.3125   -0.0012    1.0872    0.2576    0.0020
18    (64.46, 10.07) 0.38    0.0664    0.3428    0.0044    1.3697    0.2720    0.0163
4     (52.01,  1.23) 0.00    0.0547    0.3110    0.0000    1.0473    0.2564    0.0007
5     (49.84,  1.10) 0.00    0.0606    0.3163    0.0000    1.0225    0.2558    0.0001
6     (50.43,  2.28) 0.00    0.1107    0.3666    0.0000    1.0473    0.2559    0.0002
7     (54.08, -0.67) 0.00    0.0632    0.3208    0.0000    1.0827    0.2576    0.0020
D     (50.74,  0.90) 0.00    0.0720    0.3280    0.0000    1.0234    0.2560    0.0003
8B    (54.96, -4.52) 0.29    0.0634    0.3279    0.0047    1.1318    0.2598    0.0041
B8A   (50.49,  4.29) 0.34    0.0998    0.3537   -0.0024    1.0847    0.2563    0.0006
B8    (50.47, -3.16) 0.19    0.0634    0.3221    0.0016    1.0633    0.2572    0.0015
B8C   (47.36,  0.46) 0.15    0.0958    0.3516   -0.0000    1.0534    0.2558    0.0002
3C    (48.60,  1.87) 0.19    0.0542    0.3107    0.0008    1.0516    0.2557    0.0000
C3    (50.24, -2.25) 0.12    0.0542    0.3132    0.0023    1.0487    0.2568    0.0011
0     (50.00,  0.00) 0.00   -0.0000    0.2567    0.0008    1.0000    0.2559    0.0002
A1    (50.82, -0.16) 0.18    0.0700    0.3276    0.0015    1.0144    0.2561    0.0004
1A    (48.83,  0.88) 0.19    0.0700    0.3260    0.0002    1.0263    0.2557    0.0000
C3A   (50.93,  3.27) 0.32    0.0905    0.3456   -0.0011    1.0731    0.2562    0.0005
3CA   (52.86, -1.04) 0.19    0.0905    0.3475   -0.0001    1.0594    0.2570    0.0014
A3C   (47.31,  0.74) 0.10    0.0905    0.3451   -0.0012    1.0591    0.2558    0.0001
AC3   (48.87, -3.47) 0.19    0.0905    0.3477   -0.0001    1.0734    0.2572    0.0015

Table 2. Result from parameter fitting.
The column Zerr shows the magnitude of the difference between the measured impedance and the impedance computed from the S parameters for the 11 DUTs.
NFerr shows the difference between the measured NF and the NF computed from the losses and the NF parameters.
NFloss shows the loss of NF due to the non-optimum source impedance.

From table 2 we can conclude that the NF is within 0.01 dB from the optimum NF for VSWR below 1.3 and within 0.03 dB from optimum for VSWR below 1.5. Knowing that the errors due to the VSWR is so small is useful because it means that we can measure losses as NF degradation without much concern of the mismatch as long as it is reasonable.

The nfdut program also produces a list of the 11 DUTs which is shown in table 3.


Impedance for minimum NF = (48.68,  1.45) Ohms
Optimum NF =  0.2557 dB     (scale offset =  0.0638)

Device   Loss          S11           S12=S21            S22
DUT1    0.0338  (0.0218,0.0022)  (0.2243,0.9703)  (0.0067,-.0019)
DUT3    0.0221  (-.0085,-.0194)  (0.6926,-.7174)  (-.0348,-.0177)
DUT4    0.0547  (0.0198,0.0118)  (0.6990,0.7059)  (0.0247,0.0069)
DUT5    0.0606  (-.0015,0.0110)  (0.6961,0.7082)  (0.0039,0.0134)
DUT6    0.1107  (0.0048,0.0226)  (0.7004,0.6956)  (0.0013,0.0181)
DUT7    0.0632  (0.0392,-.0062)  (0.7175,0.6849)  (0.0285,-.0221)
DUT8    0.0324  (0.1560,0.0830)  (-.1003,0.9753)  (0.1293,-.0476)
DUTA    0.0359  (0.0116,0.0110)  (-.0125,0.9957)  (0.0198,-.0365)
DUTB    0.0308  (0.1713,0.0808)  (-.1309,0.9695)  (0.1912,-.0079)
DUTC    0.0319  (0.0038,0.0117)  (0.7138,-.6950)  (0.0188,0.0191)
DUTD    0.0720  (0.0074,0.0089)  (0.6879,0.7143)  (0.0016,-.0004)

Table 3. Output from nfdut.